
Using Software Agents to Maintain Autonomous Patient
Registries for Clinical Research

Shawn N. Murphy MD, Ph.D., Usman H. Rabbani, and G. Octo Barnett MD
Laboratory of Computer Science

Massachusetts General Hospital, Boston, MA.

A software agent is an application that can
function in an autonomous and intelligent fashion.
We have used mobile software agents to maintain
clinicians' patient research databases (patient
registries). Agents were used to acquire data from
the clinician and place it into the registries, copy
datafrom hospital databases into the registries, and
report data from the registries. The agents were
programmed with the intelligence to navigate
through complex network security, interact with
legacy systems, and protect themselves from various
forms offailure at multiple levels. To maximize the
separation between our system and the hospital
information infrastructure we often used Java, a
platform-independent language, to program and
distribute our sofiware agents. By using mobile
agents, we were able to distribute the computing time
required by these applications to underutilized host
machines upon which the registries could be
maintained.

INTRODUCTION

Clinicians are attracted to teaching hospitals
because large and varied patient populations offer
important opportunities for clinical research.
However, in the present health care environment of
severe economic pressures, the opportunity to study
and learn from this unique population is often lost in
the hustle of everyday clinical practice. An
important task for those clinicians who wish to
pursue clinical research is to maintain a database
(also called a registry) on a segment of the patient
population. When clinical research projects are
immature, or funding is tight, these registries must
be personally maintained by the clinician. The
registries often consist of clinical data elements
collected with each patient encounter. Additional
data may need to be collected and related to each
patient encounter, often from laboratory data,
demographic data, or other specialized hospital data.
Ordinarily, the volume of clinical data to be
collected for each encounter is not high, and much
of the additional data is conceivably available
through networked resources.

Although conceivably much of the demographic
and laboratory data for the patient registries may be
available through networked resources, it is difficult
for the average clinician to exploit this avenue to
information. Foremost are the intentional barriers
placed by hospital administrators to prevent
unrestricted data gathering from hospital databases.
Additionally, the technical expertise necessary to
construct computerized methods that can extract
data from the proprietary laboratory and
administrative databases is significant. Finally,
many clinicians have such uncertain futures at their
teaching institutions that investing time to link their
personal registries to networked hospital resources is
not practical.

In order to assist the research-oriented clinician
in maintaining a registry, an institution could take
various approaches. The institution could maintain a
very large public registry and allow clinicians to
define an unlimited number of personal fields within
this public registry. This would allow links from
these fields to some hospital data structures to exist.
However, simple relational links to our legacy data
structures do not exist. Furthermore, making the
registry continuously available for data entry and
query while ensuring proper isolation of each
clinician's data would be a difficult task. Additional
concerns regarding portability and ownership of
their private fields may discourage the clinicians
from using the public registry.

Another approach would be to help research
clinicians maintain their personal registries as they
exist now, registries located on the clinician's own
computer in a wide variety of database formats. The
clinician could query and view the database using
familiar methods. The registries would not be
integrated into a central registry, but rather would be
serviced by programs from our laboratory. A similar
concept has been presented for maintaining a
departmental research database using the ARIS
system'. However, our system differs in its use of
agents to achieve a distributed architecture that can
scale up more easily, and the fact that our system
does not involve bringing the data from the personal
registries into our possession.

1091-8280197/$5.00 C 1997 AMRA. Inc. 71

AGENT ARCHITECTURE

Over the past year, we have been working with
a software agent architecture for maintaining clinical
research databases. An agent refers to intelligent
software programs that are designed to act
autonomously so as to realize a set of goals2. In our
architecture, the goals are centered about
maintaining a patient registry loosely coupled to the
Electronic Medical Record (EMR). In our present
trials we used patient registries that consisted of
single Microsoft Access databases. Registries were
maintained in the clinical workflow of
Massachusetts General Hospital (MGH) physicians.
Data entry from the point of care was managed with
a standalone, non-mobile, non-Java software agent
application which differed fundamentally from the
mobile, Java software agents that also serviced the
registries. Mobile Java software agents would travel
to the computer upon which the registries were
maintained, and perform a given function upon the
registries at scheduled intervals. Data input into the
registries was not amenable to this paradigm of
scheduled servicing, and a direct path for data from
the agent to the registry needed to be provided.

Several options existed to allow the clinician to
input data into the registries. Data could be entered
directly into the database from the desktop as with
any Microsoft Access database. Data could also be
entered over the Intranet from any location in the
hospital using the MEDPhrase agent application.
The MEDPhrase agent application has been
previously described3 and allows data entry into an
autonomous database to be to incorporated into the
workflow of clinical note-taking (Fig. 1). The
MEDPhrase agent application allows enumerated
data elements to be entered into the fields of the
registries using a commercial World Wide Web
(WWW) server and Common Gateway Interface
(CGI). A third option for entering data into the
registries was to use a custom WWW form with a
WWW Browser such as Netscape. Both
MEDPhrase and the WWW forms require a WWW
server and CGI program to be purchased and
maintained at the site ofthe patient registry.

During data entry one wants to enter an absolute
minimum amount of data. For example, it is
convenient during data entry to just enter a patient's
medical-record number to identify the patient in the
registry. However, when querying the patient
registry, one often wishes to query by the name of
the patient, since this is what one usually
remembers. To not require a clinician to go through
the extra step of entering the patient name, the
function of a software agent might be to add the

name of the patient to a predetermined field of the
database based upon the medical-record number.

The goals of the Java software agents are
database-centric, that is, they are coordinated solely
by their orientation around a common database.
Generally, they function independently, and thus the
failure of one does not affect the operation of
another. The agents are dispatched from a central
computer to run on the host computer that actually
contains the databases. The agent architecture is
heavily based upon the Aglet system developed by
International Business Machines (IBM)4. The Aglet
system is written completely in Java. Agents are
written as Java applications and distributed using
Remote Method Invocation (RMI). RMI is an
infrastructure supported in Java to serialize code and
data classes and thus send applications from one
computer to another. The application is run when it
arrives at the host computer. Messaging and
handshaking between agents and servers occurs
using the Agent Transfer Protocol (ATP), also
developed at IBM. This mobility allowed us to run
the Java agents on the host computers at times when
the host computers were known to be underutilized.

Once the Java software agent reaches its
destination, it begins to run on the host computer.
The Java software agents access data in the
Microsoft Access registries with the Open DataBase
Connectivity (ODBC) tools available from
Microsoft, using bridges from ODBC to Java
DataBase Connectivity (JBDC). With the use of
these database drivers, the software agents can
actually communicate with any ODBC compliant
database on the host machine, as long as it is set up
to use ODBC drivers. These databases can include
Microsoft Excel or Oracle databases.

CLINICAL DATA INPUT INTO THE
PATIENT REGISTRIES

A data entry agent provided the means of
getting data from the point of care into the Microsoft
Access patient registry. The MEDPhrase
application was created as an agent that is used
alongside the EMR. It aids the clinician with data
entry by storing phrases and sentences that are
typically used by the clinician. The physician
chooses a phrase such as "The patient had a mild-
moderate tremor in the right hand," and this phrase
is written into the clinical note being actively created
by the clinician. However, if this phrase happens to
describe a physical finding that is being maintained
in one of the clinicians patient registries, a WWW
POST message is sent over the intranet to the web-
server on the computer where the patient registry

72

resides (see fig. 1). Cold Fusion. (Allair
Corporation) is used as the CGI that places the data
into the Microsoft Access patient registry. Some of
the name-value pairs act as the primary key(s) and
identify the records in the registry which should be
updated or inserted. The other name-value pairs
identify values that should be placed in named
fields. For example, when the above sentence is
written to the EMR, the value "2" would be placed
in the field "RightHandTremor."

"MGH_UN." The date of the patient encounter was
always present in a field labeled "NoteDate."

An agent was built that would query the
MGH_UN field of each record in the registry, and
then fill in the patient's last name, first name, middle
initial, date of birth, and sex in other registry fields
designated to receive this data. In order to perform
this function, the agent is dispatched from the central
computer to the host computer. The agent begins to
run on the host computer and establishes links
through JDBC-ODBC to the Microsoft Access
patient registry. If a medical-record number is read
from the MGH_UN field with a blank LastName
field in the record, a socket connection is opened to
a hospital server which responds with the patient's
demographic data wrapped in a Health Level 7
(HL7) message. The message is then unwrapped
and the fields of the patient registry are filled with
the demographic information.

Site Server_m
Figure 1. The physician uses a data entry

agent at the EMR workstation to enter commonly
used sentences into the text of the clinical note.
When a sentence is used that corresponds to a data
value that is to be entered into the clinician's patient
registry, a message is sent over the Intranet to direct
a value to be entered into the patient registry .

All sentences that are of interest to the patient
registry need to be pre-associated with enumerated
values, values that will be written to fields of the
patient registry when the corresponding sentence is
written to the EMR. This approach only works
when the data that is to be collected for a patient
registry has been pre-enumerated.

IMPLEMENTATION OF JAVA AGENTS

Two mobile Java agents were built and
deployed to assist the research clinician with the
maintenance of the patient registries. The Java
software agents were distributed to run on the host
machines periodically, usually every 24 hours. In
order for the agents to know what data to expect in
the registries, certain kinds of data needed to always
be stored under specific field names within specific
tables. The agents knew to always expect the
patient's medical-record number in the field marked

II f20/97

I

Site Server
EJ

3. oS97 1

I I

Figure 2. Life cycle of a mobile Java software
agent that enters laboratory data into patient
registries. (See text for explanation)

73

I

A second agent was built to check for laboratory
data that was desired by the patient registry (see fig
2). First, the agent is dispatched from the central
computer to the host computer (fig 2, step 1). The
agent then queries the MGH_UN fields of the
Microsoft Access patient registry to find the medical
record number of patients in the database, and then
queries the fields which are designated to receive
laboratory values (fig 2, step 2). For example, the
field name "GetPB" is used for fields that expect a
phenobarbital level. The agent will then go to a
hospital site server once every 24 hours and query
for a phenobarbital level on this patient until one is
obtained (fig 2, step 3). When the phenobarbital
level is obtained, it is placed in the "GetPB" field of
the proper patient record (fig 2, step 4). The agent
stops looking for a phenobarbital level after a certain
amount of time has elapsed from the date in the
NoteDate field, usually one week. If an expected
laboratory result is not obtained within this
designated amount of time, an E-mail message is
sent to the owner of the patient registry.
Furthermore, if a laboratory value is obtained, and is
out of a set range, the clinician is notified by E-mail
of the discrepant data.

The patient demographic and laboratory data
are collected by the Java software agents from
available hospital servers, including a hospital site
server which has been previously described5. The
site server uses HL7 for all transmissions, a
universal messaging standard for medical
transactions.

The mobile agent architecture provides an
opportunity for new security problems to arise.
Because an agent is a Java application, without
explicit programming the agent would have full
access to all disk and memory resources on the host
machine. However, the agent exists on the host in
an explicitly created "context." The context can
enforce rules for trusted vs. untrusted agents. A
trusted agent can only arrive at a host site after an
untrusted agent has sent identifying information plus
a generated private key from a host site to the central
agent server, all encrypted with a public key. A
series of transactions then establish a shared private
key, and all further agent transmission occurs using
private-key encryption. All communication between
the agents and the hospital servers is private-key
encrypted and occurs behind the hospital firewall.
The private keys expire after a set period of time.
To ensure that only authorized clinicians have access
to patient data through the agents, the agents are set
up using the same accounts used by the hospital to
access patient data. Automatic delivery of data to

the patient registry is only initiated through human
negotiation. Several database attributes are checked
to verify the authenticity of the database with every
transaction. Finally, the transaction is compared to
past transactions to alert us with an inconsistency
within a request, which stops the transaction until we
have a chance to review it.

DISCUSSION

Our objective was to maintain patient registries
for clinical research in a form that would be familiar
to the clinician. Many clinicians interested in clinical
research are familiar with some form of computerized
database. In our environment at the MGH where a
standard, universal Microsoft Office desktop exists,
Microsoft Access was a familiar database. The
ability of the research clinicians to keep their patient
registries on their own workstations, in a familiar
form, allows them to leverage their pre-existent
knowledge of this database application. In allowing
the clinician to keep registries in Microsoft Access,
they are able to initiate their own queries, construct
their own macros, and design their own display and
reporting forms.

The implementation of software agents provided
a way to maintain patient registries that were loosely
coupled to the MGH patient-care databases. A data
entry agent provided the means of getting data from
the point of care into the patient registries, and mobile
Java agents provided laboratory and demographic
data for the registries.

The mobile Java agents provided an avenue for
us to transfer the complex network transaction
technology that our laboratory has developed to
desktops throughout the hospital. While doing so, we
retained control over this technology since our mobile
agents are destroyed when they complete their
transactions. The agents have the ability to handle
complex security negotiations with the hospital's
information servers, a strategy that is unavailable with
simple relational database links. The agents are able
to ensure patient data privacy and security at many
levels.

The key to enabling software agents is the
existence of a universal infrastructure to support
them. Clearly the idea of distributing and running
applications on several independent machines is not
new. Theory of distributed software architecture has
been developed for over 15 years6. Furthermore,
distributed architectures have been applied in many
computing environments, including our own Forte
environment7. The advantages of distributed
architectures are 1) the ability to optimize
computational load distribution, and 2) the ability to

74

handle the failure of one computer with relatively
little impact to the system's functioning as a whole.
The disadvantages of distributed environments stem
mostly from the high cost of development of such
systems.

The Java language has been developed by SUN
Microsystems for (distributed) computing within an
Internet browser. In our implementation, we use the
Java Virtual Machine to run our agents as platform
independent applications. The shouldering of the
development costs of this distributed environment by
the major software manufacturers has been the key to
the success ofthe distributed Java programs.

Our mobile agent system allows the
computational burdens of Java and intelligent agents
to be distributed to many host computers. Future
operating systems are being designed around the Java
language. It is likely that computer hardware will be
available in the near future to support the Java
language.

The Java language suffers from several
disadvantages over other well know third generation
languages. It is fairly slow in comparison to a
program compiled with a Microsoft Visual C++
compiler. The user interfaces available in Java are
not as sophisticated as those interfaces that may be
constructed using the full set of application program
interface calls available in native systems.
Development tools have been slow to achieve the
sophistication available with applications written in
other languages.

We have applied our agent architecture within a
very small sphere. Similar approaches are being
explored to maintain databases for clinical guidelines,
clinical alerts, and operation improvement. Agents
by definition are easily extensible and customizable.
Most of the hard work involves setting up the secure
infrastructure within which they may operate freely.
With a secure infrastructure, agents can evolve
gradually and seamlessly into an age where they
could carry knowledge bases and guideline logic.
Finally, with the development of standards for the
context's and messaging of the agents (such as HL7),
agents could be used to transport knowledge
throughout the healthcare system.

FUTURE DIRECTIONS

Agents to be written within the next few months
include evaluation agents, the task ofwhich will be to
report the use and state of the registries (unused for
several weeks, extensive manual changes, or
extensive empty elements). This may help provide a
measure of the usefulness of the agents we have
described.

Acknowledgments

The authors thank Greg Estey and Henry Chueh for
enlightening discussions and ongoing advice. This
work was supported in part by Training Grant NLM
LM 07092 and in part by NLM research grant
LM05854 and AHCPR grant HS06575. An
equipment grant was provided by Hewlett Packard.

References

1. Timmers, T., Pierik, F., Steenberger, M. et al.
ARIS: Integrating Multi-source Data for
Research in Andrology. In Gardner RM, ed.
Proceedings of the Nineteenth Annual
Symposium on Computer Applications in
Medical Care, pp. 445-8, 1995.

2. Maes, P. ed. Designing Autonomous Agents,
Cambridge, MA: MIT Press. 1990.

3. Murphy, S.N. and G. 0. Barnett (1996).
Achieving Automated Narrative Text
Interpretation Using Phrases in the Electronic
Medical Record. In Cimino J.J, ed., JAMIA,
Symp. Sup, pp. 532-6, 1996.

4. Lange, D. and Chang, D. IBM Aglets
Workbench, Programming Mobile Agents in
Java, 1996.
http://www.ibm.co.jp/aglets/whitepaper.htm.

5. Wingerde, F.J. van, J. Schindler, P. Kilbridge et.
Al. Using HL7 and the World Wide Web for
Unifying Patient Data from Remote Databases.
In Cimino J.J, ed., JAMIA, Symp. Sup, pp. 643-
7, 1996.

6. Carriero, N. and Gelemter, D. Coordination
languages and their significance.
Communications of the ACM, Vol. 35, No. 2,
pp. 97-107, Feb. 1992.

7. Chueh, H.C., Raila, W.F., Pappas, J.J. et al. A
Component-Based, Distributed Object Services
Architecture for a Clinical Workstation. In
Cimino J.J, ed., JAMIA, Symp. Sup, pp. 638-2,
1996.

75

